GaN Templates on Silicon

Kyma Gallium Nitride (GaN) templates grown by HVPE provide a high purity GaN buffer for subsequent device epitaxy. HVPE based templates have several advantages over MOCVD growth:

- Dramatic increase in MOCVD throughput by eliminating the following steps:
 - Sapphire pre-treatment
 - Nucleation layer growth
 - GaN buffer growth
- High purity source material produces higher purity epitaxy
- Lower cost in high volume due to HVPE high growth rates

Silicon Orientation: (111)
GaN Orientation: C-plane (00.1)
Conduction Type: Undoped (N-), Si-doped (N+) and Semi-Insulating
Front Surface Finish (Ga-face): As-grown
Back Surface Finish: SSP or DSP from silicon vendor
Undoped (N-) Template Resistivity: <5 Ohm-cm
Si-doped (N+) Template Resistivity: <0.02 Ohm-cm
Semi-insulating Template Resistivity: >10⁶ Ohm-cm
Edge Exclusion Area: 1 mm for 2-3” & 5 mm for 4”

Available Sizes: 2” (50.8 mm), 3” (76.2 mm) and 4” (100 mm)
Available Grades: Production, Research and Rider
Available Thickness: 200nm up to 500 nm (± 100nm)

<table>
<thead>
<tr>
<th>Grade:</th>
<th>Production</th>
<th>Research</th>
<th>Rider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro Defect Density:</td>
<td>≤5 cm⁻²</td>
<td>≤10 cm⁻²</td>
<td>>10 cm⁻²</td>
</tr>
<tr>
<td>Useable Surface Area</td>
<td>≥90%</td>
<td>≥80%</td>
<td><80%</td>
</tr>
</tbody>
</table>

Other silicon types and thickness options available upon request